

Architecture= Constraints

System-level

Aim: a universal taxonomy of complex systems and theories

Protocols

Component

- Describe systems/components in terms of constraints on what is possible
- Decompose constraints into component, systemlevel, protocols, and emergent
- Not necessarily unique, but hopefully illuminating nonetheless

Domain specific, local

- Will be our focus/goal of a unified theory
- From physics to information to computation to control

Universal strategies?

Even though garments seem analog/continuous

Garments

Garments have limited access to threads and fibers

quantization for robustness

Cloth

Xform

Xform

Fiber

constraints on cross-layer interactions

Prevents unraveling of lower layers

Functionally diverse garments

Money

New fragilities

- Theft, counterfeiting, fraud, and "creative accounting" are now possible
- The beginning of a growing complexity-fragility spiral
- Complex legal infrastructure
- Law, banking, finance, Ponzi schemes, derivatives, credit default swaps, ...

Usually a platform for other architectures

For example, cells have internal layering that provides a platform, for a completely separate layering at the organ level

Layering of neural control

Meta-layers Cortex Physiology Prediction Goals **Actions Actions** errors

Diverse toys

control

Universal Control

assembly

Diverse instructions

Robust yet fragile

Extremes of

- Robust yet fragile
- Simplicity and complexity
- Constrained and flexible
- Frozen and evolvable
- Digital and analog
- Diverse and conserved

Diverse toys

Huge variety

Standardized mechanisms
Highly conserved

control

assembly

Huge variety

Lego

Huge variety

Limited environmental uncertainty needs minimal control

Standard assembly

Huge variety

Diverse toys

Standard assembly

Diverse instructions

Question: what is the difference between hourglass and bowtie here?

A "minimal" setting to address this issue.

Variety of bricks

Snap

Variety of systems

The snap is a static interface specification.

Diverse toys

Standard assembly

Diverse instructions but adds to it.

It inputs instructions and components and outputs assembled systems.

Computer aided design tools

Random, uncontrolled, snap connection of Lego parts yields "nonfunctional" toys.

Diverse function

Standard assembly

Loss of reuse, gain in robustness.

Diverse instructions

Robustness/ Evolvability

- A huge variety of new and different toys can be built
- From a huge variety of different components
- Both toys and components can be rearranged and added in new ways
- Yet fragile?

Yet fragile

- Add or remove a tiny, indistinguishable amount of material from either side of a key interface.
- \rightarrow Complete failure.
- Other parts of the bricks may be nicked or cut with minimal impact
- This robust, yet fragile (RYF) feature of protocols is a candidate for a universal law
- "Layering" hides the snap in an assembly
- What robustness/fragility properties do alternative protocols have?

Lego system requirements

	Alternative designs?			
Performance				
Trauma				
Allowed connections				
Reuse				
Evolvable parts				
Evolvable systems				
Labor cost				
Parts cost				

Consider some alternative interfaces and their tradeoffs...

No interface. Simple blocks.

Standard interface. (Wild type.)

Add glue to hold the parts together.

Injection mold the whole toy from scratch.

	Smooth	WT	Glue	Mold
Performance	\			↑ ↑
Trauma	1		↑	↑ ↑
Allowed connections	$\uparrow \uparrow$			\
Reuse			1	↓ ↓
Evolvable parts	\			+
Evolvable systems	↓ ↓			+
Labor cost	\		\	1
Parts cost	↑		\	↑

- Lego is "optimally robust" (Pareto) not "optimal."
- Similar to complex engineering systems and biology.

	Smooth	WT	Glue	Mold
Performance	\			↑ ↑
Trauma	↓ ↓		↑	$\uparrow \uparrow$
Allowed connections	^			↓ ↓
Reuse			↓ ↓	$\downarrow\downarrow$
Evolvable parts	\			\
Evolvable systems	↓ ↓			\
Labor cost	\		\	
Parts cost	↑		\	↑

Fragility: Perturbing the snap connector?

Smooth is robust

WT is *very* fragile

No connections, no fragility

Glued is less fragile

Robust or fine-tuned?

- Set of all possible interconnections is a (combinatorial) huge set.
- Set of interesting toys is also large, but an infinitesimally small subset. Very special and finely tuned.
- Similarly, among the potential toy *systems* architectures using the same plastic material, Lego is highly structured and finely tuned.
- At the component level, the stud-and-tube coupling is very finely machined.
- Robust yet fragile (RYF) is universal in complex engineering and biology

The evolution of complexity

Suppose you want to put a structure on wheels?

Easy: Find Lego parts with wheels.

Suppose you want to motorize a vehicle with wheels?

Easy: Add Lego motors, gears and battery.

This adds additional protocols:

- Electrical protocols for batteries and motors.
- Mechanical protocols for gears and axles.

Additional protocols and modules.

Standard assembly

/ Diverse instructions

Evolvability

- The snap/brick can be augmented with additional parts and interfaces
- Assembly remains essentially the same

Complex toys can be created, and require additional layers of control.

education

ariety of

parts

NXT controller

NXT controller

Diverse systems

Universal Control

Diverse instructions

Bowties and Hourglasses

Lego Bowties

Variety of bricks

Snap

Variety of systems

For a single toy

Lego hourglass

control

assembly

Toy system

Lego hourglass

Huge variety of toys

Standardized mechanisms
Highly conserved

control

assembly

Huge variety of instructions

Building blocks

General purpose

assembly

Quantized/ digital

Instructions

Each step uses general purpose machines

Each step uses general purpose machines

Building blocks

Lower layers

Lower layers

Building blocks

Building blocks Assemblies AA Enzymes Catabolism Precursors Nucl. RNA xRNA Genome

Ribosome

General purpose polymerases

RNAp

DNAp

Quantized/ digital

Instructions

Lower layers

Lego hourglass

Huge variety of toys

control

Standardized mechanisms

Highly conserv

Arge

Variety of parts

of instructions

Analog behavior Kinematics Dynamics

Analog behavior
Kinematics
Dynamics

control

Digital description

Control

Assembly,

Reactions Flow/error **Carriers Proteins** Translation Reactions Flow/error **RNA** level Transcription Reactions Flow/error A level Instructions

Universal strategies?

Even though garments seem analog/continuous

quantization for robustness

Garments have limited access to threads and fibers

constraints on cross-layer interactions

Prevents unraveling of lower layers

Universal strategies?

Even though toys seem analog/continuous

quantization for robustness

Toys have limited access to (hidden) snaps

constraints on cross-layer interactions

Prevents unraveling of lower layers

Universal strategies?

Even though
Cells seem
analog/continuous

quantization for robustness

Cells have limited and structured access to DNA layer

constraints on cross-layer interactions

Prevents unraveling of lower layers

Huge variety of phenotypes

Reactions

Flow/erro

Carriers

Proteins

Standardized mechanisms Highly conserved

control

Translation Reactions

Flow/erro

RNA level

Large (< < huge)Variety of parts anscription Reactions

ow/erro

Huge variety of instructions

Instructions

A level

RNA

Frozen and evolvable

Digital and analog

Flow/erro

DNA level

fan-in of diverse inputs

fan-out of diverse outputs

Diverse function

Universal Control

Diverse components

Essential ideas

Robust yet fragile

Constraints that deconstrain

Robust yet fragile

Constraints that deconstrain

fan-in of diverse inputs

fan-out of diverse outputs

Diverse function

Universal Control

Diverse components

Essential ideas

Robust yet fragile

Constraints that deconstrain

What theory is relevant to these more complex feedback systems?

$$\frac{1}{\pi} \int_{0}^{\infty} \ln |S(j\omega)| \frac{z}{z^{2} + \omega^{2}} d\omega \ge \ln \left| \frac{z + p}{z - p} \right|$$

